Growth of Metal Silicides from Metal Flux Reactions

Susan E. Latturner Department of Chemistry Florida State University

I. Metal flux synthesis

- II. Zintl phases and Thermoelectric materials
- III. Metal silicides A/Mg/Si (A = Ca, Sr, Ba, Eu, Yb)

Metal Flux Synthesis

Metal flux synthesis: reaction where one low-melting metal reactant is present in large excess, acting as a solvent.

Common metal fluxes and products

Tin flux: PrCo₂P₂, BaFe₂As₂, Co₇Zn₃Sn₈

Aluminum flux: Co₄Al₁₃, Y₂Al₃Si₂, CeNiAl₄Ge₂, U₈Al₁₉Si₆

Gallium flux: $Mn_{123}Ga_{137}$, $Yb_3Ga_4Ge_6$, $Tb_{1.8}Si_8C_2B_{36}$

Flux synthesis advantages:

- Low temperatures--kinetic/metastable products
- Liquid state reaction--crystal growth
- Exploratory synthesis: allows reactants to find product with local energy minimum structure

Metal Flux Synthesis

Combine reactants, add excess amount of suitable flux metal

Heat above mp of flux, slowly cool

Centrifuge while flux still molten

Characterization of product compounds

What's in it?

Elemental analysis to determine what elements were incorporated SEM-EDS

What is the structure?

Single crystal XRD to determine positioning of elements

What other products were formed?

Powder XRD to determine purity, yield

What are its properties?

Band structure calculations to explore electronic structure

Magnetic susceptibility

Thermoelectric/transport measurements

Intermetallics and Zintl Phases

Intermetallic compounds: Compounds comprised of two or more metals or metalloids

Zintl phases: Subclass of Intermetallics. Compounds comprised of electropositive metal (Group 1, Group 2, some RE) and metalloid

Charge transfer between electropositive metal and electronegative metalloids leads to metal cations and metalloid anions that are charge-balanced. Causes semi-metallic or semiconducting behavior

Often have complex structures

Metal + metal	metal + metalloid	metal + nonmetal
Alloys	Zintl phases	Ionic salts
Cu _x Ni _{1-x}	Mg ₂ Si, Na ₄ Sn ₉	MgO, NaCl
Metallic	semimetal/semiconductor	insulator

Classifying compounds based on differences in electronegativity χ Electronegativity $\chi = 1 - 2$ for metals $\chi = 2.5 - 4$ for nonmetals

Thermoelectric materials

Generate a voltage when a temperature gradient is applied

Used as: power sources (makes use of waste heat)

Thermoelectric materials

To maintain thermal gradient while producing a voltage, compound must have:

- Low thermal conductivity κ
- High electrical conductivity σ (low electrical resistivity ρ)
- High Seebeck coefficient S (voltage / Δ T)

Thermoelectric figure of merit:

$$zT = \frac{S^2}{\rho\kappa}T$$

Thermoelectric materials

Problem: ρ and S are interrelated!

Best balance: Doped semiconductors/semimetals: Bi_2Te_3 , $Yb_{14}MnSb_{11}$, PbTe. Or...Zintl phases!

 κ is relatively independent, make as low as possible (heavy elements, complex structure, disorder)

Magnesium-based fluxes: Mg/AI or Mg/Zn

Adding AI or Zn lowers Mg m.p. Using 22 mmol Mg, 8 mmol of Zn or AI. Silicon reacts with divalent metals (A = Ca, Sr, Ba, Eu, Yb) in Mg-rich melt

- Large family of new A/A'/Mg/Si compounds
- Charge-balanced Zintl phases
- Al or Zn not incorporated into products

Ternary A/Mg/Si products

What determines structure and composition of product?

lonia radii of A2+ actions

	Cation	Radius (Å)
Reactant ratio	Mg ²⁺	0.86
	Ca ²⁺	1.14
Heating profile/cooling rate	Sr ²⁺	1.32
	Ba ²⁺	1.49
	Eu ²⁺	1.31
	Yb ²⁺	1.16

Possible complication with Eu and Yb: They can be trivalent Yb³⁺ radius: 1.01 Å Eu³⁺ radius: 1.09 Å

Ternary A/Mg/Si products

Smaller A cations: give orthorhombic TiNiSi – type product (CaMgSi) or tetragonal U_3Si_2 – type product (Yb₂MgSi₂)

Larger A cations: give hexagonal $Ho_5Ni_{19}P_{12}$ – type products

CaMgSi

Ca

Mg

Si

TiNiSi type Orthorhombic Space group *Pnma* a = 7.4690(2)Å b = 4.4255(1)Å c = 8.3113(2)Å (Ca²⁺)(Mg²⁺)(Si⁴⁻) Zintl phase, semimetal

Si anions surrounded by 9 cations $Si@(Ca/Mg)_9$ shown in polyhedral mode

Yb₂MgSi₂

Mo₂FeB₂ type Tetragonal Space group *P*4/*mbm* a = 7.0495(1)Å c = 4.1313(1)Å

Contains Si-Si unit, formally [Si₂⁶⁻]

Zintl phase: (Yb²⁺)₂(Mg²⁺)[Si₂⁶⁻]

...if the Yb is +2! Reports indicate it is Yb³⁺

$A_{5+x}Mg_{19-x}Si_{12}$ (A = Sr, Ba, Eu)

compound	Cell parameters (Å)
Ba ₅ Mg ₁₉ Si ₁₂	a = 14.6392, c = 4.4775
Sr _{7.82} Mg _{16.18} Si ₁₂	a = 14.8076, c = 4.4720
Eu ₈ Mg ₁₆ Si ₁₂	a = 14.882, c = 4.4863

Charge-balanced: $(\Lambda^{2+}/\Lambda^{2+})$ (Si4-)

 $(A^{2+}/Mg^{2+})_{24}(Si^{4-})_{12}$

A/A'/Mg/Si semi-metallic silicides

What happens if you use more than one A element?

$A_{5+x}Mg_{19-x}Si_{12}$ (A = Sr, Ba)

Different amounts of Ba + Sr reacted with 3 mmol Si in Mg/Zn flux (22:8 mmol)

All products have $Ho_5Ni_{19}P_{12}$ structure type

Ba goes on Ho sites only Sr goes on Ho sites and mixes on one Ni site

Ba mmol	Sr mmol	Product	a (Å)	c (Å)	Volume (Å ³)
3	0	Ba ₅ Mg ₁₉ Si ₁₂	14.6392(2)	4.47754(9)	831.00(3)
2.25	0.75	Ba _{4.86} Sr _{2.94} Mg _{16.20} Si ₁₂	14.9113(3)	4.5507(1)	876.27(4)
1.5	1.5	Ba _{3.63} Sr _{4.20} Mg _{16.17} Si ₁₂	14.9063(2)	4.5382(1)	873.28(3)
0.75	2.25	Ba _{1.93} Sr _{5.99} Mg _{16.08} Si ₁₂	14.8730(4)	4.5082(2)	863.64(6)
0	3	Sr _{7.82} Mg _{16.18} Si ₁₂	14.8076(4)	4.4720(1)	849.18(5)

Zarei, A.; Uddin, M.S.; Baumback, R.; Wei, K.; Latturner, S.E.; Inorg. Chem., 2024, submitted.

(Ba/Sr)_{5+x}Mg_{19-x}Si₁₂ Electronic Properties

 $Ba_5Mg_{19}Si_{12}$ (well ordered, no site mixing) is semiconducting with $E_g = 0.02 \text{ eV}$.

 $Sr_{7.82}Mg_{16.18}Si_{12}$ and $Ba_{3.6}Sr_{4.2}Mg_{16.2}Si_{12}$ are metallic

(Ba/Sr)_{5+x}Mg_{19-x}Si₁₂ Thermal Conductivity

Thermal conductivity is sum of electron contribution and lattice contribution $\kappa_{tot} = \kappa_{elec} + \kappa_{latt}$

 κ_{elec} directly proportional to conductivity; can be calculated; subtracted from κ_{tot} to get lattice contribution

More disorder and rattling atoms \rightarrow lower κ_{latt}

(Ba/Sr)_{5+x}Mg_{19-x}Si₁₂

Thermoelectric figure of merit:

$$zT = \frac{S^2}{\rho\kappa}T$$

Lowest for Ba₅Mg₁₉Si₁₂

Higher for the analogs with more disorder (Sr/Mg and Sr/Ba mixing)

Need high temp measurements!

Improve zT by lowering κ_{latt}

- Heavier atoms (Yb, Eu?)
- More rattling (Ca mixing?)
- More complex structures?

(A/A'/Mg)₂Si semi-metallic silicides

What happens if you use more than one A element?

Ca/Ba/Mg/Si (Taylor's version)

Different amounts of Ba + Ca reacted with 3 mmol Si in either Mg/AI or Mg/Zn flux (22:8 mmol)

Ca:Ba mmol amounts

$Ba_2Ca_{2.3}Mg_{9.7}Si_7$

Zr₂Fe₁₂P₇ type

hexagonal, P-6; a = 11.196(2) Å, c = 4.4595(9) Å

Ba in the Zr sites, Si in the P sites, Mg in the Fe sites

Ca mixes on one Mg site

Silsby, K.; Latturner, S.E.; Kauzlarich, S.M. Chem. Mater., 2015, 27, 6708-6716

$Ba_2Ca_{2.3}Mg_{9.7}Si_7$

Charge-balanced Zintl phase: (Ba²⁺/Ca²⁺/Mg²⁺)₁₄(Si⁴⁻)₇

Band structure calculations indicate semiconductor/semimetal

Ba₂Ca_{2.3}Mg_{9.7}Si₇ electrical properties

1000

Temperature (K)

Increasing resistivity as temperature rises (metallic/semimetallic)

Low thermal conductivity

Silsby, K.; Kauzlarich, S.M.; Latturner, S.E. Chem. Mater., 2015, 27, 6708-6716

Ba₂Ca_{2.3}Mg_{9.7}Si₇ thermoelectric properties

High Seebeck coefficient; n-type

 $ZT = S^2T/\rho\kappa$

Maximum of 0.4 at 900 K

Improvements likely if substituted or doped

Conclusions / Future Work

Flux reactions enable crystal growth of metal silicides

Semi-metallic silicide Zintl phases show promise as thermoelectric compounds

Improve zT by lowering κ_{latt}

- Heavier atoms (Yb, Eu?)
- More disorder (site mixing)
- Rattling of small cations mixed on large cation sites
- More complex structures?

zT likely higher at high temperature; need high temp measurements!

Acknowledgments

Xiaowei Ma, Kurt Silsby, Milorad Stojanovic, Jeff Whalen, Guillermo Vasquez, Jo Haddock, Olufemi Araoyimbo, Amir Zarei, Taylor Walker

Susan Kauzlarich (UC Davis)

Kaya Wei and Ryan Baumbach (NHMFL)

Large family of (A/A'/Mg)₂Si from flux growth

Compound	Structure type	Space group	Unit cell parameters (Å)	
$Ba_{1.9}Ca_{2.4}Mg_{9.7}Si_7$	$Zr_2Fe_{12}P_7$	<i>P</i> -6	<i>a</i> = 11.196(2)	c = 4.4595(9)
$Ba_{2}Yb_{0.88}Mg_{11.12}Si_{7} \\$			<i>a</i> = 11.0830(6)	c = 4.4150(3)
$Eu_{2}Yb_{1.11}Mg_{10.89}Si_{7}$			<i>a</i> = 10.9910(7)	c = 4.3250(3)
$\mathrm{Sr}_{5}\mathrm{Mg}_{19}\mathrm{Si}_{12}$	$\mathrm{Ho}_{5}\mathrm{Ni}_{19}\mathrm{P}_{12}$	<i>P</i> -62 <i>m</i>	a = 14.457(1)	c = 4.3713(4)
$Ba_5Mg_{19}Si_{12}$			a = 14.5874(8)	c = 4.4662(2)
$Eu_{7.5}Mg_{16.5}Si_{12}$			a = 14.668(5)	c = 4.428(1)
$Ba_5Eu_{2.85}Mg_{16.15}Si_{12}$			a = 14.857(2)	c = 4.5225(5)
$Ba_{3.4}Sr_{4.5}Mg_{16}Si_{12}$			a = 14.862(9)	c = 4.521(2)
$Sr_{4.8}Ca_{3.2}Mg_{16}Si_{12}$			a = 14.666(2)	c = 4.4187(7)
$Ba_5Yb_{2.26}Mg_{16.73}Si_{12}$			a = 14.8223(8)	c = 4.5174(3)
$Eu_5Yb_2Mg_{17}Si_{12}$			a = 14.526(2)	c = 4.3800(6)
$Sr_5Eu_{1.39}Mg_{17.61}Si_{12}$			a = 14.553(2)	c = 4.4102(7)
$Ba_6Yb_{1.84}Mg_{18.16}Si_{13}$	$Zr_6Ni_{20}P_{13}$	<i>P</i> -6	a = 15.455(1)	c = 4.5046(3)
$\mathrm{Ba}_{6}\mathrm{Eu}_{3}\mathrm{Mg}_{17}\mathrm{Si}_{13}$			a = 15.482(1)	c = 4.5082(3)
${\rm Ba}_{20}{\rm Yb}_{4.7}{\rm Mg}_{61.3}{\rm Si}_{43}$	Ho ₂₀ Ni ₆₆ P ₄₃	<i>P</i> 6 ₃ / <i>m</i>	a = 27.928(4)	c = 4.4808(6)
$Ba_{20}Eu_{5.6}Mg_{60.4}Si_{43}$			a = 27.988(3)	c = 4.4915(6)
$Ba_{20}Mg_{66}Si_{43}$			a = 27.805(4)	c = 4.4741(6)